3.1841 \(\int \frac{(A+B x) \sqrt{a^2+2 a b x+b^2 x^2}}{(d+e x)^{5/2}} \, dx\)

Optimal. Leaf size=160 \[ \frac{2 \sqrt{a^2+2 a b x+b^2 x^2} (-a B e-A b e+2 b B d)}{e^3 (a+b x) \sqrt{d+e x}}-\frac{2 \sqrt{a^2+2 a b x+b^2 x^2} (b d-a e) (B d-A e)}{3 e^3 (a+b x) (d+e x)^{3/2}}+\frac{2 b B \sqrt{a^2+2 a b x+b^2 x^2} \sqrt{d+e x}}{e^3 (a+b x)} \]

[Out]

(-2*(b*d - a*e)*(B*d - A*e)*Sqrt[a^2 + 2*a*b*x + b^2*x^2])/(3*e^3*(a + b*x)*(d + e*x)^(3/2)) + (2*(2*b*B*d - A
*b*e - a*B*e)*Sqrt[a^2 + 2*a*b*x + b^2*x^2])/(e^3*(a + b*x)*Sqrt[d + e*x]) + (2*b*B*Sqrt[d + e*x]*Sqrt[a^2 + 2
*a*b*x + b^2*x^2])/(e^3*(a + b*x))

________________________________________________________________________________________

Rubi [A]  time = 0.0857776, antiderivative size = 160, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 2, integrand size = 35, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.057, Rules used = {770, 77} \[ \frac{2 \sqrt{a^2+2 a b x+b^2 x^2} (-a B e-A b e+2 b B d)}{e^3 (a+b x) \sqrt{d+e x}}-\frac{2 \sqrt{a^2+2 a b x+b^2 x^2} (b d-a e) (B d-A e)}{3 e^3 (a+b x) (d+e x)^{3/2}}+\frac{2 b B \sqrt{a^2+2 a b x+b^2 x^2} \sqrt{d+e x}}{e^3 (a+b x)} \]

Antiderivative was successfully verified.

[In]

Int[((A + B*x)*Sqrt[a^2 + 2*a*b*x + b^2*x^2])/(d + e*x)^(5/2),x]

[Out]

(-2*(b*d - a*e)*(B*d - A*e)*Sqrt[a^2 + 2*a*b*x + b^2*x^2])/(3*e^3*(a + b*x)*(d + e*x)^(3/2)) + (2*(2*b*B*d - A
*b*e - a*B*e)*Sqrt[a^2 + 2*a*b*x + b^2*x^2])/(e^3*(a + b*x)*Sqrt[d + e*x]) + (2*b*B*Sqrt[d + e*x]*Sqrt[a^2 + 2
*a*b*x + b^2*x^2])/(e^3*(a + b*x))

Rule 770

Int[((d_.) + (e_.)*(x_))^(m_.)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Dis
t[(a + b*x + c*x^2)^FracPart[p]/(c^IntPart[p]*(b/2 + c*x)^(2*FracPart[p])), Int[(d + e*x)^m*(f + g*x)*(b/2 + c
*x)^(2*p), x], x] /; FreeQ[{a, b, c, d, e, f, g, m}, x] && EqQ[b^2 - 4*a*c, 0]

Rule 77

Int[((a_.) + (b_.)*(x_))*((c_) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Int[ExpandIntegran
d[(a + b*x)*(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0] && ((ILtQ[
n, 0] && ILtQ[p, 0]) || EqQ[p, 1] || (IGtQ[p, 0] && ( !IntegerQ[n] || LeQ[9*p + 5*(n + 2), 0] || GeQ[n + p + 1
, 0] || (GeQ[n + p + 2, 0] && RationalQ[a, b, c, d, e, f]))))

Rubi steps

\begin{align*} \int \frac{(A+B x) \sqrt{a^2+2 a b x+b^2 x^2}}{(d+e x)^{5/2}} \, dx &=\frac{\sqrt{a^2+2 a b x+b^2 x^2} \int \frac{\left (a b+b^2 x\right ) (A+B x)}{(d+e x)^{5/2}} \, dx}{a b+b^2 x}\\ &=\frac{\sqrt{a^2+2 a b x+b^2 x^2} \int \left (-\frac{b (b d-a e) (-B d+A e)}{e^2 (d+e x)^{5/2}}+\frac{b (-2 b B d+A b e+a B e)}{e^2 (d+e x)^{3/2}}+\frac{b^2 B}{e^2 \sqrt{d+e x}}\right ) \, dx}{a b+b^2 x}\\ &=-\frac{2 (b d-a e) (B d-A e) \sqrt{a^2+2 a b x+b^2 x^2}}{3 e^3 (a+b x) (d+e x)^{3/2}}+\frac{2 (2 b B d-A b e-a B e) \sqrt{a^2+2 a b x+b^2 x^2}}{e^3 (a+b x) \sqrt{d+e x}}+\frac{2 b B \sqrt{d+e x} \sqrt{a^2+2 a b x+b^2 x^2}}{e^3 (a+b x)}\\ \end{align*}

Mathematica [A]  time = 0.0641243, size = 86, normalized size = 0.54 \[ -\frac{2 \sqrt{(a+b x)^2} \left (a e (A e+2 B d+3 B e x)+A b e (2 d+3 e x)-b B \left (8 d^2+12 d e x+3 e^2 x^2\right )\right )}{3 e^3 (a+b x) (d+e x)^{3/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[((A + B*x)*Sqrt[a^2 + 2*a*b*x + b^2*x^2])/(d + e*x)^(5/2),x]

[Out]

(-2*Sqrt[(a + b*x)^2]*(A*b*e*(2*d + 3*e*x) + a*e*(2*B*d + A*e + 3*B*e*x) - b*B*(8*d^2 + 12*d*e*x + 3*e^2*x^2))
)/(3*e^3*(a + b*x)*(d + e*x)^(3/2))

________________________________________________________________________________________

Maple [A]  time = 0.005, size = 88, normalized size = 0.6 \begin{align*} -{\frac{-6\,B{x}^{2}b{e}^{2}+6\,Axb{e}^{2}+6\,aB{e}^{2}x-24\,Bxbde+2\,aA{e}^{2}+4\,Abde+4\,aBde-16\,Bb{d}^{2}}{3\, \left ( bx+a \right ){e}^{3}}\sqrt{ \left ( bx+a \right ) ^{2}} \left ( ex+d \right ) ^{-{\frac{3}{2}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((B*x+A)*((b*x+a)^2)^(1/2)/(e*x+d)^(5/2),x)

[Out]

-2/3/(e*x+d)^(3/2)*(-3*B*b*e^2*x^2+3*A*b*e^2*x+3*B*a*e^2*x-12*B*b*d*e*x+A*a*e^2+2*A*b*d*e+2*B*a*d*e-8*B*b*d^2)
*((b*x+a)^2)^(1/2)/e^3/(b*x+a)

________________________________________________________________________________________

Maxima [A]  time = 1.05356, size = 130, normalized size = 0.81 \begin{align*} -\frac{2 \,{\left (3 \, b e x + 2 \, b d + a e\right )} A}{3 \,{\left (e^{3} x + d e^{2}\right )} \sqrt{e x + d}} + \frac{2 \,{\left (3 \, b e^{2} x^{2} + 8 \, b d^{2} - 2 \, a d e + 3 \,{\left (4 \, b d e - a e^{2}\right )} x\right )} B}{3 \,{\left (e^{4} x + d e^{3}\right )} \sqrt{e x + d}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x+A)*((b*x+a)^2)^(1/2)/(e*x+d)^(5/2),x, algorithm="maxima")

[Out]

-2/3*(3*b*e*x + 2*b*d + a*e)*A/((e^3*x + d*e^2)*sqrt(e*x + d)) + 2/3*(3*b*e^2*x^2 + 8*b*d^2 - 2*a*d*e + 3*(4*b
*d*e - a*e^2)*x)*B/((e^4*x + d*e^3)*sqrt(e*x + d))

________________________________________________________________________________________

Fricas [A]  time = 1.37365, size = 196, normalized size = 1.22 \begin{align*} \frac{2 \,{\left (3 \, B b e^{2} x^{2} + 8 \, B b d^{2} - A a e^{2} - 2 \,{\left (B a + A b\right )} d e + 3 \,{\left (4 \, B b d e -{\left (B a + A b\right )} e^{2}\right )} x\right )} \sqrt{e x + d}}{3 \,{\left (e^{5} x^{2} + 2 \, d e^{4} x + d^{2} e^{3}\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x+A)*((b*x+a)^2)^(1/2)/(e*x+d)^(5/2),x, algorithm="fricas")

[Out]

2/3*(3*B*b*e^2*x^2 + 8*B*b*d^2 - A*a*e^2 - 2*(B*a + A*b)*d*e + 3*(4*B*b*d*e - (B*a + A*b)*e^2)*x)*sqrt(e*x + d
)/(e^5*x^2 + 2*d*e^4*x + d^2*e^3)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x+A)*((b*x+a)**2)**(1/2)/(e*x+d)**(5/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]  time = 1.14827, size = 184, normalized size = 1.15 \begin{align*} 2 \, \sqrt{x e + d} B b e^{\left (-3\right )} \mathrm{sgn}\left (b x + a\right ) + \frac{2 \,{\left (6 \,{\left (x e + d\right )} B b d \mathrm{sgn}\left (b x + a\right ) - B b d^{2} \mathrm{sgn}\left (b x + a\right ) - 3 \,{\left (x e + d\right )} B a e \mathrm{sgn}\left (b x + a\right ) - 3 \,{\left (x e + d\right )} A b e \mathrm{sgn}\left (b x + a\right ) + B a d e \mathrm{sgn}\left (b x + a\right ) + A b d e \mathrm{sgn}\left (b x + a\right ) - A a e^{2} \mathrm{sgn}\left (b x + a\right )\right )} e^{\left (-3\right )}}{3 \,{\left (x e + d\right )}^{\frac{3}{2}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x+A)*((b*x+a)^2)^(1/2)/(e*x+d)^(5/2),x, algorithm="giac")

[Out]

2*sqrt(x*e + d)*B*b*e^(-3)*sgn(b*x + a) + 2/3*(6*(x*e + d)*B*b*d*sgn(b*x + a) - B*b*d^2*sgn(b*x + a) - 3*(x*e
+ d)*B*a*e*sgn(b*x + a) - 3*(x*e + d)*A*b*e*sgn(b*x + a) + B*a*d*e*sgn(b*x + a) + A*b*d*e*sgn(b*x + a) - A*a*e
^2*sgn(b*x + a))*e^(-3)/(x*e + d)^(3/2)